

Published on Web 01/01/2003

A New Turn Structure for the Formation of β -Hairpins in Peptides

James S. Nowick* and Justin O. Brower

Department of Chemistry, University of California - Irvine, Irvine, California 92697-2025

Received October 14, 2002; E-mail: jsnowick@uci.edu

Good turn structures are critical for the formation of β -hairpins in peptides.¹ Gellman and co-workers have elegantly shown that mirror-image β -turns based upon D-Pro-Gly are especially good at stabilizing β -hairpins.² We recently discovered that peptides containing the unnatural amino acid *Hao*³ linked to the side chain of the amino acid ornithine (Orn) also fold into well-defined β -hairpins.⁴ In this work, we establish that ornithine turns are especially good at stabilizing β -hairpins by comparing Gellman's D-Pro-Gly turn peptide 1⁵ to Orn-containing analogue 2.⁶

In the current study, we compare Orn-containing peptide **2** to D-Pro-Gly-containing peptide **1** by means of ¹H NMR chemical shift and NOE studies. We also compare it to peptides **3**–**6**, which contain other amino acids in the turn region, and to cyclic peptide **7**. Peptide **3** contains Asn-Gly,⁷ which is known to favor β -hairpin formation, albeit not as strongly as D-Pro-Gly.^{2c,5b} Peptide **4** contains δ -aminovaleric acid (Ava), which is identical to Orn, with the exception that it lacks an α -amino group. With a flexible chain in the turn region, this peptide provides a negative control for chemical shift and NOE studies. Peptide **5** contains D-Orn and is designed to probe the effect of the turn stereochemistry, which Gellman has shown to be critical in β -hairpin formation.^{2,5} Peptide **6** contains Lys in the turn region, to probe whether the length of the Orn side chain imparts a unique ability to stabilize a β -hairpin conformation. Cyclic peptide **7** contains two Orn turns, to lock it into a β -hairpin

Figure 1. ¹H NMR chemical shifts of the α -protons of peptides 1–3 and 5–7 relative to those of Ava peptide 4.¹⁰

conformation, and provides a positive control for chemical shift and NOE studies. 8

Comparison of the chemical shifts of the α -protons of peptide 2 to those of controls 4 and 7 suggests that it is largely folded in D₂O at 276 K (Figure 1).^{9,10} Consistent with a β -hairpin structure, the nonterminal α -proton resonances from the β -strand regions of both 2 and 7 are generally downfield of those of control 4, with the α -proton resonances of Trp, Gln3, Lys, Phe, and Thr exhibiting significant (>0.10 ppm) and comparable downfield shifting.¹¹ Gellman and co-workers have reported that the Gln3, Val5, Lys, and Thr α -proton resonances are reliable reporters of the degree of folding of peptide 1.5 If Val5 is excluded from this set to reflect structural differences between the Orn and D-Pro-Gly turns, then Gln3, Lys, and Thr constitute an appropriate set for comparison. Orn-turn peptide 2 exhibits 0.30 ppm average downfield shifting of these resonances, while cyclic peptide 7 exhibits 0.32 ppm average downfield shifting, suggesting that 2 is largely folded.¹² D-Pro-Gly peptide 1 exhibits 0.25 ppm average downfield shifting, suggesting that it is also largely folded, albeit possibly slightly less so. Asn-Gly peptide 3 exhibits 0.20 ppm average downfield shifting, suggesting folding to a lesser degree. Lys peptide 6 exhibits little downfield shifting of the α -proton resonances (0.04 ppm), suggesting little or no folding into a β -hairpin. D-Orn peptide 5 exhibits slight (0.04 ppm) upfield shifting relative to Ava control 4, suggesting that it is not folded into a β -hairpin and that control 4 may have a very small degree of β -hairpin conformation. Collectively, these data indicate that Orn is comparable or slightly better in turn-forming propensity than D-Pro-Gly and is significantly better than Lys.

¹H NMR transverse-ROESY (Tr-ROESY)¹³ experiments corroborate the chemical shift results. The Orn peptide **2**, D-Pro-Gly peptide **1**, and cyclic peptide **7** exhibit relatively strong NOEs between the Tyr and Phe α -protons and between the Trp and Val11

Figure 2. ¹H NMR Tr-ROESY¹³ spectra of peptides 1-3 and 7.9

Figure 3. Models of the Orn turn (Ac- $^{\delta}$ Orn-NHMe, global minimum: MacroModel V7.0/AMBER*/H₂O) and a type I' mirror-image β -turn.

 α -protons, which are characteristic of the main-chain close contacts of β -sheets (Figure 2). Asn-Gly peptide **3** exhibits significantly weaker interstrand NOEs, suggesting that it is less well-folded than peptides **1**, **2**, and **7**. Peptides **4**-**6** exhibit no long-range NOEs, suggesting little or no folding.

¹H NMR studies, in conjunction with molecular modeling, indicate that the Orn turn adopts a well-defined conformation similar to a mirror-image β -turn (Figure 3). Consistent with this model, Orn peptide **2** exhibits an NOE, which is strong, between the Orn α -proton and only one of the two diastereotopic Orn δ -protons (Figure 2). This proton (*pro-S*) appears 0.37 ppm downfield of the other δ -proton (*pro-R*), reflecting the magnetic anisotropy of the adjacent (Val5) carbonyl group. Differences between the coupling patterns of the two protons also support this model; in D₂O solution the downfield resonance resembles a broad triplet ($J \approx 14$ Hz), and the upfield resonance resembles a broad doublet ($J \approx 14$ Hz). The diastereotopic δ -protons of the Orn turn in cyclic peptide **7** exhibit 0.60 ppm separation and similar coupling patterns and NOEs. If 0.60 ppm is taken as a limit for complete folding, and the absence of magnetic anisotropy (0.00 ppm) in Ava peptide **4** is taken as a limit for complete unfolding, then the 0.37 ppm value associated with Orn peptide **2** reflects 62% folding, which is identical to that which Gellman estimates for D-Pro-Gly peptide **1**.⁵ Comparison of the Orn turn to a type I' mirror-image β -turn (Figure 3) reveals that both turns have the same twist, suggesting that only the L-Orn enantiomer promotes β -hairpin formation because the twist of the L-Orn turn matches that of a β -sheet, while that of a D-Orn turn opposes it.^{2,14}

In summary, the Orn turn is comparable to the D-Pro-Gly turn in promoting β -hairpin formation in peptides. This novel δ -peptide turn may offer practical advantages for NMR studies, because the separation of the diastereotopic δ -proton resonances reflects the degree of folding of peptides containing it and because poorly folded structures will not exhibit complex spectra from tertiary amide rotamers.

Acknowledgment. We thank the NIH for grant support (GM-49076). J.O.B. thanks the UCI Cancer Research Institute for training grant support (NCI-5T32CA009054).

References

- (1) (a) Smith, C. K.; Regan, L. Acc. Chem. Res. 1997, 30, 153-161. (b) Blanco, F.; Ramírez-Alvarado; M.; Serrano, L. Curr. Opin. Struct. Biol. 1998, 8, 107-111. (c) Gellman, S. H. Curr. Opin. Chem. Biol. 1998, 2, 717-725. (d) Lacroix, E.; Kortenme, T.; de la Paz, M. L.; Serrano, L. Curr. Opin. Struct. Biol. 1999, 9, 487-493.
 (2) (a) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc. 1994,
- (2) (a) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc. 1994, 116, 4105–4106. (b) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc. 1996, 118, 6975–6985. (c) Stanger, H. E.; Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 4236–4237.
- (3) Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654–7661.
- Nowick, J. S.; Lam, K. S.; Khasanova, T. V.; Kemnitzer, W. E.; Maitra, S.; Mee, H. T.; Liu, R. J. Am. Chem. Soc. 2002, 124, 4972–4973.
- (5) (a) Espinosa, J. F.; Gellman, S. H. Angew. Chem., Int. Ed. 2000, 39, 2330–2333.
 (b) Espinosa, J. F.; Syud, F. A.; Gellman, S. H. Protein Sci. 2002, 11, 1492–1505.
- (6) These peptides contain a naturally occurring hydrophobic cluster from a β-hairpin in the B1 domain of protein G, which retains a partially folded conformation when excised from the protein: Blanco, F. J.; Rivas, G.; Serrano, L. Nat. Struct. Biol. **1994**, *1*, 584–590.
- (7) Ramírez-Alvarado; M.; Blanco, F. J.; Serrano, L. Nat. Struct. Biol. 1996, 3, 604-612. (b) de Alba, E.; Jiménez, M. A.; Rico, M. J. Am. Chem. Soc. 1997, 119, 175-183. (c) Maynard, A. J.; Searle, M. S. J. Chem. Soc., Chem. Commun. 1997, 1297-1298.
- (8) Peptides 1-6 were prepared by automated solid-phase peptide synthesis on PAL resin (Fmoc chemistry), purified by reverse-phase HPLC, and isolated and studied as the trifluoroacetate salts. Peptides 2 and 7 were prepared in a similar fashion using Boc-Orn(Fmoc)-OH. Peptide 7 was assembled on trityl resin, starting with Boc-Orn(Fmoc)-OH, and was efficiently cyclized in solution with HBTU while still protected.
- (9) All peptides were studied by ¹H NMR spectroscopy at 500 MHz in 4 mM solution in pH 3.8 (uncorrected) 100 mM deuterioacetate-buffered D₂O solutions at 276 K by one-dimensional, TOCSY (150 ms mixing time), and transverse-ROESY (Tr-ROESY)¹³ experiments (250 ms mixing time) and are referenced against sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS).
- (10) α-Proton resonances were assigned by TOCSY and Tr-ROESY¹³ experiments and by comparison to published assignments.^{5b} Gln3 and Gln12 were assigned by side-chain magnetic anisotropy. Val5 and Val11 were assigned by NOEs in peptides 1–3 and 7 and were assigned tentatively by chemical shifts in peptides 4–6.
- (11) (a) Wishart, D. S.; Sykes, B. D.; Richards, F. M. J. Mol. Biol. 1991, 222, 311–333. (b) Wishart, D. S.; Sykes, B. D.; Richards, F. M. Biochemistry 1992, 31, 1647–1651.
- (12) Syud, F. A.; Espinosa, J. F.; Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 11577-11578.
 (13) (a) Hwang, T.-L.; Shaka, A. J. J. Am. Chem. Soc. 1992, 114, 3157-
- (13) (a) Hwang, T.-L.; Shaka, A. J. J. Am. Chem. Soc. 1992, 114, 3157– 3159. (b) Hwang, T.-L.; Shaka, A. J. J. Magn. Reson., Ser. B 1993, 102, 155–165.
- (14) (a) Sibanda, B. L.; Thornton, J. M. Nature 1985, 316, 170–174. (b) Mattos, C.; Petsko, G. A.; Karplus, M. J. Mol. Biol. 1994, 238, 733–747.

JA028938A