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Good turn structures are critical for the formation ofâ-hairpins
in peptides.1 Gellman and co-workers have elegantly shown that
mirror-imageâ-turns based uponD-Pro-Gly are especially good at
stabilizing â-hairpins.2 We recently discovered that peptides
containing the unnatural amino acidHao3 linked to the side chain
of the amino acid ornithine (Orn) also fold into well-defined
â-hairpins.4 In this work, we establish that ornithine turns are
especially good at stabilizingâ-hairpins by comparing Gellman’s
D-Pro-Gly turn peptide15 to Orn-containing analogue2.6

In the current study, we compare Orn-containing peptide2 to
D-Pro-Gly-containing peptide1 by means of1H NMR chemical
shift and NOE studies. We also compare it to peptides3-6, which
contain other amino acids in the turn region, and to cyclic peptide
7. Peptide3 contains Asn-Gly,7 which is known to favorâ-hairpin
formation, albeit not as strongly asD-Pro-Gly.2c,5bPeptide4 contains
δ-aminovaleric acid (Ava), which is identical to Orn, with the
exception that it lacks anR-amino group. With a flexible chain in
the turn region, this peptide provides a negative control for chemical
shift and NOE studies. Peptide5 containsD-Orn and is designed
to probe the effect of the turn stereochemistry, which Gellman has
shown to be critical inâ-hairpin formation.2,5 Peptide6 contains
Lys in the turn region, to probe whether the length of the Orn side
chain imparts a unique ability to stabilize aâ-hairpin conformation.
Cyclic peptide7 contains two Orn turns, to lock it into aâ-hairpin

conformation, and provides a positive control for chemical shift
and NOE studies.8

Comparison of the chemical shifts of theR-protons of peptide2
to those of controls4 and 7 suggests that it is largely folded in
D2O at 276 K (Figure 1).9,10 Consistent with aâ-hairpin structure,
the nonterminalR-proton resonances from theâ-strand regions of
both 2 and7 are generally downfield of those of control4, with
theR-proton resonances of Trp, Gln3, Lys, Phe, and Thr exhibiting
significant (>0.10 ppm) and comparable downfield shifting.11

Gellman and co-workers have reported that the Gln3, Val5, Lys,
and ThrR-proton resonances are reliable reporters of the degree of
folding of peptide1.5 If Val5 is excluded from this set to reflect
structural differences between the Orn andD-Pro-Gly turns, then
Gln3, Lys, and Thr constitute an appropriate set for comparison.
Orn-turn peptide2 exhibits 0.30 ppm average downfield shifting
of these resonances, while cyclic peptide7 exhibits 0.32 ppm
average downfield shifting, suggesting that2 is largely folded.12

D-Pro-Gly peptide1 exhibits 0.25 ppm average downfield shifting,
suggesting that it is also largely folded, albeit possibly slightly less
so. Asn-Gly peptide3 exhibits 0.20 ppm average downfield shifting,
suggesting folding to a lesser degree. Lys peptide6 exhibits little
downfield shifting of theR-proton resonances (0.04 ppm), sug-
gesting little or no folding into aâ-hairpin.D-Orn peptide5 exhibits
slight (0.04 ppm) upfield shifting relative to Ava control4,
suggesting that it is not folded into aâ-hairpin and that control4
may have a very small degree ofâ-hairpin conformation. Col-
lectively, these data indicate that Orn is comparable or slightly better
in turn-forming propensity thanD-Pro-Gly and is significantly better
than Lys.

1H NMR transverse-ROESY (Tr-ROESY)13 experiments cor-
roborate the chemical shift results. The Orn peptide2, D-Pro-Gly
peptide1, and cyclic peptide7 exhibit relatively strong NOEs
between the Tyr and PheR-protons and between the Trp and Val11

Figure 1. 1H NMR chemical shifts of theR-protons of peptides1-3 and
5-7 relative to those of Ava peptide4.10
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R-protons, which are characteristic of the main-chain close contacts
of â-sheets (Figure 2). Asn-Gly peptide3 exhibits significantly
weaker interstrand NOEs, suggesting that it is less well-folded than
peptides1, 2, and7. Peptides4-6 exhibit no long-range NOEs,
suggesting little or no folding.

1H NMR studies, in conjunction with molecular modeling,
indicate that the Orn turn adopts a well-defined conformation similar
to a mirror-imageâ-turn (Figure 3). Consistent with this model,
Orn peptide2 exhibits an NOE, which is strong, between the Orn
R-proton and only one of the two diastereotopic Ornδ-protons
(Figure 2). This proton (pro-S) appears 0.37 ppm downfield of the
other δ-proton (pro-R), reflecting the magnetic anisotropy of the
adjacent (Val5) carbonyl group. Differences between the coupling
patterns of the two protons also support this model; in D2O solution
the downfield resonance resembles a broad triplet (J ≈ 14 Hz),
and the upfield resonance resembles a broad doublet (J ≈ 14 Hz).
The diastereotopicδ-protons of the Orn turn in cyclic peptide7
exhibit 0.60 ppm separation and similar coupling patterns and
NOEs. If 0.60 ppm is taken as a limit for complete folding, and
the absence of magnetic anisotropy (0.00 ppm) in Ava peptide4 is

taken as a limit for complete unfolding, then the 0.37 ppm value
associated with Orn peptide2 reflects 62% folding, which is
identical to that which Gellman estimates forD-Pro-Gly peptide
1.5 Comparison of the Orn turn to a type I′ mirror-imageâ-turn
(Figure 3) reveals that both turns have the same twist, suggesting
that only the L-Orn enantiomer promotesâ-hairpin formation
because the twist of theL-Orn turn matches that of aâ-sheet, while
that of aD-Orn turn opposes it.2,14

In summary, the Orn turn is comparable to theD-Pro-Gly turn
in promotingâ-hairpin formation in peptides. This novelδ-peptide
turn may offer practical advantages for NMR studies, because the
separation of the diastereotopicδ-proton resonances reflects the
degree of folding of peptides containing it and because poorly folded
structures will not exhibit complex spectra from tertiary amide
rotamers.
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Figure 2. 1H NMR Tr-ROESY13 spectra of peptides1-3 and7.9

Figure 3. Models of the Orn turn (Ac-δOrn-NHMe, global minimum:
MacroModel V7.0/AMBER*/H2O) and a type I′ mirror-imageâ-turn.
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